Early Life Exposure to Chronic Intermittent Hypoxia Primes Increased Susceptibility to Hypoxia-Induced Weakness in Rat Sternohyoid Muscle during Adulthood
نویسندگان
چکیده
Intermittent hypoxia is a feature of apnea of prematurity (AOP), chronic lung disease, and sleep apnea. Despite the clinical relevance, the long-term effects of hypoxic exposure in early life on respiratory control are not well defined. We recently reported that exposure to chronic intermittent hypoxia (CIH) during postnatal development (pCIH) causes upper airway muscle weakness in both sexes, which persists for several weeks. We sought to examine if there are persistent sex-dependent effects of pCIH on respiratory muscle function into adulthood and/or increased susceptibility to re-exposure to CIH in adulthood in animals previously exposed to CIH during postnatal development. We hypothesized that pCIH would cause long-lasting muscle impairment and increased susceptibility to subsequent hypoxia. Within 24 h of delivery, pups and their respective dams were exposed to CIH: 90 s of hypoxia reaching 5% O2 at nadir; once every 5 min, 8 h per day for 3 weeks. Sham groups were exposed to normoxia in parallel. Three groups were studied: sham; pCIH; and pCIH combined with adult CIH (p+aCIH), where a subset of the pCIH-exposed pups were re-exposed to the same CIH paradigm beginning at 13 weeks. Following gas exposures, sternohyoid and diaphragm muscle isometric contractile and endurance properties were examined ex vivo. There was no apparent lasting effect of pCIH on respiratory muscle function in adults. However, in both males and females, re-exposure to CIH in adulthood in pCIH-exposed animals caused sternohyoid (but not diaphragm) weakness. Exposure to this paradigm of CIH in adulthood alone had no effect on muscle function. Persistent susceptibility in pCIH-exposed airway dilator muscle to subsequent hypoxic insult may have implications for the control of airway patency in adult humans exposed to intermittent hypoxic stress during early life.
منابع مشابه
Upper airway dilator muscle weakness following intermittent and sustained hypoxia in the rat: effects of a superoxide scavenger.
Obstructive sleep apnoea syndrome (OSAS) is a common disorder associated with upper airway muscle dysfunction. Agents that improve respiratory muscle performance may have considerable therapeutic value. We examined the effects of acute exposure to sustained and intermittent hypoxia on rat pharyngeal dilator muscle function. Additionally, we sought to test the efficacy of antioxidant treatment i...
متن کاملChronic intermittent hypoxia increases rat sternohyoid muscle NADPH oxidase expression with attendant modest oxidative stress
Chronic intermittent hypoxia (CIH) causes upper airway muscle dysfunction. We hypothesized that the superoxide generating NADPH oxidase (NOX) is upregulated in CIH-exposed muscle causing oxidative stress. Adult male Wistar rats were exposed to intermittent hypoxia (5% O2 at the nadir for 90 s followed by 210 s of normoxia), for 8 h per day for 14 days. The effect of CIH exposure on the expressi...
متن کاملEffects of sustained hypoxia on sternohyoid and diaphragm muscle during development.
Sustained hypoxia is a dominant feature of respiratory disease. Despite the clinical significance, the effects of sustained hypoxia on the form and function of respiratory muscle during development are relatively underexplored. Wistar rats were exposed to 1 week of sustained hypoxia (ambient pressure 450 mmHg) or normoxia at various time points during development. Sternohyoid and diaphragm musc...
متن کاملTempol relieves lung injury in a rat model of chronic intermittent hypoxia via suppression of inflammation and oxidative stress
Objective(s): Obstructive sleep apnea (OSA) is confirmed to cause lesions in multiple organs, especially in the lung tissue. Tempol is an antioxidant that has been reported to restrain inflammation and oxidative stress, with its role in OSA-induced lung injury being unclear. This study aimed to investigate the beneficial effect of tempol on chronic intermittent hypoxia (IH)-induced lung injury....
متن کاملThe effects of chronic episodic hypercapnic hypoxia on rat upper airway muscle contractile properties and fiber-type distribution.
OBJECTIVE Obstructive sleep apnea (OSA) is caused by episodes of upper airway (UA) obstruction due to an inability of UA muscles such as the geniohyoids and sternohyoids to maintain airway patency. This results in chronic episodic hypercapnic hypoxia. Chronic continuous hypoxia and episodic hypocapnic hypoxia affect skeletal muscle structure and function, but the effects of chronic episodic hyp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Frontiers in physiology
دوره 7 شماره
صفحات -
تاریخ انتشار 2016